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Fig. 1: Here we propose MoDex, a framework which learns neural hand models to represent various dexterous hands. We

enable precise control in high-dimensional action space with a well-trained hand model, the generation of diverse gestures

by linking the hand model with the LLM, and data-efficient in-hand manipulation via learning hierarchical dynamics model.

Abstract— Controlling hands in the high-dimensional action
space has been a longstanding challenge, yet humans naturally
perform dexterous tasks with ease. In this paper, we draw
inspiration from the human embodied cognition and reconsider
dexterous hands as learnable systems. Specifically, we introduce
MoDex, a framework which employs a neural hand model
to capture the dynamical characteristics of hand movements.
Based on the model, a bidirectional planning method is devel-
oped, which demonstrates efficiency in both training and infer-
ence. The method is further integrated with a large language
model to generate various gestures such as “Scissorshand”
and “Rock&Roll.” Moreover, we show that decomposing the
system dynamics into a pretrained hand model and an external
model improves data efficiency, as supported by both theoretical
analysis and empirical experiments. Additional visualization
results are available at https://tongwu19.github.io/MoDex.

∗Authors contributed equally. †Corresponding author.
1Shenzhen Ubiquitous Data Enabling Key Lab, Shenzhen International

Graduate School, Tsinghua University, Shenzhen 518055, China. Emails:
{wu-t23, lsj20}@mails.tsinghua.edu.cn, lyuchuqiao@163.com, {sujh21,
chs22}@mails.tsinghua.edu.cn, and ding.wenbo@sz.tsinghua.edu.cn

This work was supported by Shenzhen Key Laboratory of Ubiquitous
Data Enabling (No. ZDSYS20220527171406015), Shenzhen Science and
Technology Program (JCYJ20220530143013030), Guangdong Innovative
and Entrepreneurial Research Team Program (2021ZT09L197), Tsinghua
Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty
Program of Shenzhen Pengrui Foundation (No. SZPR2023005), Shenzhen
Higher Education Stable Support Program (WDZC20231129093657002),
and Meituan.

I. INTRODUCTION

Driven by the need for more advanced robotic capabilities,

research for dexterous hands has expanded, focusing on

areas such as dexterous grasping [1]–[3], in-hand manipula-

tion [4]–[7] and musculoskeletal manipulation [8], [9]. Yet,

controlling hands in a high-dimensional action space remains

a significant challenge, primary due to the large amount of

data needed to train Deep Reinforcement Learning (DRL)

policies for such manipulations tasks. This data demand

arises from the vast exploration space created by the high

action dimensions, coupled with the inefficient data utiliza-

tion in current DRL methods, resulting in an unreasonbly

large dataset needed to learn effective control strategies.

Reducing the dimensionality of the action space is one ap-

proach to mitigating this issue. Berg et al. [10] demonstrated

this by identifying synergies which elucidate correlations

among different dimensions, achieved through retaining the

principal components. However, their method requires a

residual component to refine performance, which paradox-

ically increases the dimensionality. Another solution is to

optimize the use of collected data. As a result, Model-

Based Planning (MBP) has been introduced to train dy-

namics models using online [11] or offline [12] algorithms

for more efficient policy learning. Nevertheless, these well-
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TABLE I: We investigate simulation models of four different

dexterous hands, which cover a range of driving mechanisms

(joint-driven and tendon-driven), actuation types (fully-

actuated, under-actuated, and over-actuated), and structural

complexities, reflected in their number of fingers (NoFs),

degrees of freedom (DoFs), and action dimensions.

Name Driven Actuation NoFs DoFs Dimension

Robotiq [16] Joint-driven Fully-actuated 3 11 11

Allegro [17] Joint-driven Fully-actuated 4 16 16

Shadowhand [17] Joint-driven Under-actuated 5 24 20

Myohand [18] Tendon-driven Over-actuated 5 23 39

trained models tend to characterize the dynamics of the

entire specific manipulation systems, which greatly limits

their transferability to different tasks.

In this paper, we reframed the dexterous hand as an

independent system and propose that the hand itself should

be studied through the lens of embodied cognition. This

perspective is inspired by the remarkable ability of humans

and animals to utilize internal models to control bodies

with high Degrees of Freedom (DoFs) [13]. Specifically, we

present a model-based approach to characterize the dexterous

hand, utilizing a forward model for state prediction and

an inverse model for decision-making. To accelerate the

planning process, we bidirectionally integrate the hand model

with a Cross-Entropy Method [14] (CEM) planner. The

control performance of this approach was then validated on

hand-tips reach tasks using simulation models of four well-

known dexterous hands (as shown in Table I). Results show

that our method is more data-efficient compared to traditional

reinforcement learning methods. Additionally, the successful

experiments on four different hands also highlight the high

representational capacity of the neural hand model.

Furthermore, we showcase the versatility of our hand

model by applying it to gesture generation and in-hand

manipulation task. First, we combine the hand model with a

Large Language Model (LLM) for text-conditioned gesture

generation. This is achieved by prompting the LLM to

produce a cost function of the hand state, which is then used

to plan a corresponding action. Our approach successfully

generated a variety of common gestures, such as “Scissors-

hand” and “Rock&Roll” across multiple hands. For in-hand

manipulation, we leverage the embodied cognition of the

dexterous hand by decomposing the system dynamics into a

hand model and an external dynamics model. In addition, an

online algorithm [15] is applied, which iteratively collects

data, learns the dynamics model and updates planning.

Results from three different object reorientation tasks show

that this hierarchical approach enables data-efficient learning.

Our key contributions are as follows:

• We propose modelling dexterous hands with Neural

Networks (NNs). The hand model consists of a forward

model that depicts the forward dynamics and an inverse

model that generates decision proposals. Our NN-based

approach offers several advantages, such as high repre-

sentational capacity and transferability.

• We further introduce a bidirectional framework for

efficient control by integrating the hand model with

CEM planning. The accuracy of our method is demon-

strated through hand-tips reach tasks, evaluated on four

dexterous hands in simulation.

• We combine a well-trained hand model with a large

language model to generate gestures. These two mod-

ules are linked via prompting the LLM to yield cost

functions for planning. Our experiments successfully

generated a variety of gestures.

• To achieve data-efficient in-hand manipulation, we pro-

pose learning decomposed system dynamics models.

Our method was tested on object reorientation tasks,

showing superior data efficiency while maintaining high

performance.

II. RELATED WORKS

A. Dexterous Manipulation

Dexterous manipulation has garnered significant attention,

due to the remarkable performance demonstrated by model-

free RL. Among the various manipulation tasks, prior works

mainly focused on dexterous grasping, in-hand manipulation,

and the emerging area of musculoskeletal manipulation.

For instance, UniDexGrasp++ [19] introduces a multi-stage

curriculum learning method for dexterous grasping, em-

ploying iterative geometrical curriculum learning learning

and generalist-specialist learning. This method demonstrates

outstanding performance across more than 3000 object in-

stances. In contrast, DexVIP [20] utilizes human videos

to generate rewards for functional grasping by estimating

human pose priors. While controlling a dexterous hand for

grasping is already challenging, in-hand manipulation further

increases the difficulty by requiring the rotation or reorien-

tation of objects within in the hand. Chen et al. [5] leverage

observed point clouds to reorient novel objects using a three

finger hand. Yin et al. [6] instead interpret sparse contact

information as tactile observation to realize touch-based in-

hand rotation. Yuan et al. [21] combine visual sensing with

tactile sensing for defter in-hand manipulation. Building on

these, musculoskeletal manipulation aims to mimic human-

like dexterity by introducing musculoskeletal models, which

further increases the action dimension. To reduce the com-

plexity of the action space, Berg et al. [10] propose using

principal component analysis and independent component

analysis to identify the synergies in dexterous manipula-

tion. To enhance generalizability in high-dimensional tasks,

Caggiano et al. [8] follow a multi-task learning procedure to

grasp diverse objects with a musculoskeletal hand.

Although model-free RL has demonstrated superior per-

formance on dexterous manipulation, alternative models are

being considered to tackle these tasks with less data. Instead

of directly training an RL policy for grasping in an end-to-

end manner, Unidexgrasp [2] learns a grasp proposal model

and leverages the grasp proposals as the input of the RL

policy. They employ DexGraspNet [1] to generate a large

number of high-quality grasps with accelerated DFC [22].

Other methods use a contact model to improve generalizabil-

ity. GenDexGrasp [16] and ContactGrasp [23] decompose
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dexterous grasping into two stages: they utilize a contact

model to provide contact map and a hand model for grasping

optimization. However, these methods assume a known hand

model. On the contrary, Nagabandi et al. [11] propose to

learn a neural network model for the entire manipulation

system with a random shooting MPC controller. Furthermore,

Nagabandi et al. [15] improve the model learning algorithm

and apply it to dexterous manipulation. While these two

methods bypass the use of predefined hand models, the

learned dynamics model is limited to specific hands and

objects. Rather than relying on a predefined hand model or

modelling the entire system dynamics, we concentrate on

learning a general internal model to represent the hand’s be-

haviors, which can then be applied to downstream dexterous

tasks.

B. Internal Model

The internal model was first introduced by Francis et

al. [24] to explicitly model the control system. The human

body, as a highly dexterous physiological system, exhibits the

signs of maintaining an internal model [13], [25]. Kawato et

al. [26] suggest that an accurate internal model constructed

from previous perception is the primary information for

motor planning, since observations from environment are

not always available and reliable. For example, occlusions

may occur when humans rely on vision for observation.

As a support, Wolpert et al. [27] found that even without

vision, humans can still estimate the location of hands

after movements. The internal model consists of a forward

model for predicting the results of control signals and an

inverse model for generating the control proposals of given

targets. Motor adaptation experiments [28] provide evidences

for both models: when humans are perturbed by external

force, they can still control their hands to follow the target

trajectories by vision supervision. In this work, we propose

to learn neural networks as internal models to plan high-

dimensional dexterous control, mimicking the physiological

processes in human body.

III. METHOD

A. Learning Neural Hand Models

Controlling a hand with high degrees of freedom is an

exceptionally complex task, yet humans manage it effort-

lessly, indicating the use of internal model planning [29].

This phenomenon highlights the importance of modeling the

body system. Accordingly, we propose to learn a neural hand

model for high-dimensional dexterous control. The neural

hand model includes:

1) A Forward Model for Hand State Prediction: The

forward model predicts the next hand state based on the

command of actuators and the current hand state, expressed

as follows:

ŝt+1 = fθ(st,at), (1)

where at ∈ R
K represents the action generated by actuators

with a dimension of K, st ∈ R
H denotes the current hand

state and ŝt+1 ∈ R
H denotes the predicted next hand state.

Fig. 2: Quasi-static v.s. Sequential. We distinguish dex-

terous control tasks into two settings. Quasi-static setting

focuses solely on the final outcome and is formulated as

a single-step task. In contrast, sequential setting considers

intermediate states and is formulated as a multi-step task.

The forward function, fθ(·), is defined by learnable param-

eters θ. While the formula is straightforward, it assumes

that the mapping from inputs to the next hand state can be

expressed as a function. This assumption is both intuitive and

has been shown to be practical in our experiments for robotic

hands as well as bionic hands, such as Myohand [18].

In the field of dexterous control, sequential tasks like in-

hand manipulation are a major area of focus. However, non-

sequential tasks, where the static result is more important

than the dynamic process, also play a crucial role. Exam-

ples include gesture generation and dexterous grasping. To

address these quasi-static dexterous control tasks, we also

propose a quasi-static forward model which disregards the

current hand state st and utilizes only the action to predict

the subsequent hand state. Figure 2 illustrates both settings.

2) An Inverse Model for Action Proposal: The inverse

model works in reverse to the forward model, providing

approximate action proposals to reach a target state. This

process is formulated as:

a ∼ gφ(·|st, sT ), (2)

where g denotes the inverse probability distribution with

learnable parameters φ and sT ∈ R
H denotes the target

hand state. Predicting accurate actions is highly variable,

as the accuracy depends on the information available in the

hand state. Additionally, the mapping from the input to the

control signal might not be a function, resulting in multiple

possible action solutions for a single target. To address this,

we introduce a rough inverse model which represents action

proposals as distributions rather than deterministic values. In

implementation, we use the output of the inverse model as the

mean, and the average absolute error as the standard variance,

to form a Gaussian distribution. This distribution serves as

the initial set of action proposals, which are subsequently

refined as elaborated in the following section.

Similarly, to address quasi-static situations, we generate

action proposals directly from the target hand state, bypass-

ing the consideration of the current hand state.

3) Learning via exploration: To learn a neural hand

model, we collect data through exploration. While teleopera-
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Fig. 3: Framework. Firstly, we explore the action space and collect dynamics data. Afterwards, a forward model is trained

to predict the next state based on the current state and the proposed action, while the inverse model provides a distribution

of action proposals to achieve the target state. Using the two models, we apply CEM to plan the optimal action. Secondly, to

generate gestures from an action perspective, we utilize LLM to provide a cost function according to the textual inputs. The

cost function is used to optimize actions which produce the desired gesture. Thirdly, we decompose the system dynamics

model into a hand model and an external model, which improves the learning efficiency in in-hand manipulation tasks.

tion and pre-coding are viable alternatives, random or policy-

based exploration implicitly captures the hand’s reachability

within task-specific settings. In quasi-static scenarios, we

reset the hand to its default state and record the subsequent

state following the executed action. In sequential scenarios,

we reset the hand and gather trajectories of transitions.

During the training stage, we use MSE loss for the quasi-

static setting. In the sequential setting, we employ multi-step

MSE loss for the forward model and MSE loss for the inverse

model.

B. Bidirectional Planning Strategy

Planning in the high-dimensional action space is time-

consuming for iteration-based methods due to the vast size

of the action space. To efficiently control a high-DoF hand

at high frequency, we draw inspiration from neurobiology,

where the central nervous system (CNS) decomposes a

complex movement into an initial movement and small

sub-movements [30], [31]. The initial movement may be

inaccurate but must be generated quickly, while the sub-

movements adjust for any errors in the initial movement.

Our bidirectional planning strategy follows a similar ap-

proach. Initially, we utilize the learned inverse model to

generate a distribution which provides rapid, albeit imprecise,

action proposals. In the quasi-static setting the distribution

serves as the initial sampling distribution for the CEM

planner, while in the sequential setting we utilize the mean as

the first inaccurate action. During refinement, CEM planner

continuously interacts with the forward model to attain

better action samples. We also employ MPC [11] for the

sequential setting which updates planning based on current

observations. Although the actions generated by inverse

model may be inaccurate, the distribution still provides

sufficient information to accelerate planning, as demonstrated

in Section IV-A.

C. Language-Based Gesture Generation

With a well-trained hand model in place, we could apply

it to various tasks. One particularly intriguing yet under-

explored task is gesture formation based on language inputs

from an action perspective. In this section, we formulate this

as a quasi-static problem and propose to combine the hand

model with a large language model to achieve language-

based gesture generation.

To generate a gesture, we first present the LLM with a

linguistic gesture request and obtain a heuristic cost function

of the hand state, where the cost decreases as the hand state

becomes more similar to the target gesture. In this work, we

use fingertip positions as the primary representation of the

hand state as they offer a straightforward yet effective means

of producing diverse gestures. For instance, to generate an

”OK” gesture with a five finger hand, the cost function can

be defined as follows:

J (s) = −∥s0 − s1∥2 +
∑

i>2

(si · n̂i), (3)

where si represents the position of ith fingertip, and n̂i

denotes the direction for straightening each finger. This

formulation forces the thumb and the index finger to come

close together while encouraging the middle finger, the ring

finger, and the little finger to remain straight. To enable the

LLM to generate such cost functions, we provide several

examples in system prompts, serving as in-context learn-

ing [32]. Subsequently, the learned hand model is employed

to optimize the action using our proposed planning strategy,

with the cost function as the objective.

D. Decomposed Dynamics Learning

While quasi-static setting can represent a part of dexterous

control tasks, sequential setting is more prevalent in practice.

In most cases, traditional methods consider the hand and the

external environment as a whole system, which we found
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TABLE II: We evaluate our method on hand-tips reach

tasks in quasi-static setting for 100 episodes. S.R.: Success

Rate(%) ↑; R.E.: Reach distance Error per finger(cm) ↓;

P.S.: Planning Samples ↓. The successful thresholds for

Robotiq&Allegro&Shadowhand and Myohand are 0.6cm and

1.25cm respectively. We note that RL fails in this task since

it is suitable for sequential tasks.

Methods
Robotiq Allegro Shadowhand Myohand

S.R. R.E. P.S. S.R. R.E. P.S. S.R. R.E. P.S. S.R. R.E. P.S.

RS 53 0.58 – 2 1.12 – 0 1.44 – 15 1.97 –

SAC 16 0.83 – 0 2.01 – 0 2.12 – 3 3.41 –

FM+RS 100 0.25 10k 57 0.61 10k 20 0.72 10k 33 1.77 10k

FM+BGD 100 0.24 3.2k 79 0.50 3.2k 41 0.63 3.2k 37 1.69 3.2k

FM+CEM 100 0.24 2.4k 73 0.52 2.4k 47 0.60 2.4k 74 1.03 2.4k

Ours 100 0.22 1.6k 76 0.51 1.6k 49 0.59 1.6k 80 0.93 1.6k

inefficient since the dexterous hand and the external envi-

ronment are highly independent. Therefore, in this section,

we propose a hierarchical method, which decomposes the

system dynamics into a hand model and an external dynamics

model.

When executing an action, we first apply the hand model

to predict the hand state transition, formulated in Equation 1.

The hand model is pretrained since humans can obtain it

from past experiences. Next, we take as input the predicted

hand state and the current external state to predict the next

hand state and the next external state using an external

dynamics model:

st+1,xt+1 = fψ(ŝt+1,xt), (4)

where xt and xt+1 denote the current external state and the

next external state, while ŝt+1 and st+1 denote the predicted

hand state by hand model and the predicted hand state after

interacting with external world. fψ is a learnable model

which depicts the intermediate dynamics. If we express

the system dynamics as one whole model, the input-output

dimension is (H + O + K) × (H + O), where H , O

and K are the dimensions of hand state, object state and

action respectively. By adopting the hierarchical approach,

the input-output dimension is reduced to (H+O)×(H+O),
which directly eliminates the action dimension of the input.

However, since pretrained hand models may lack accuracy,

we opt to train the hierarchical model in an end-to-end

manner. To learn the dynamics model, we employ an online

algorithm [15] that iteratively rolls out, collects dynamics

data and updates the model. A multi-step loss function is

used to facilitate long-term prediction.

IV. EXPERIMENTS

A. Hand-Tips Reach

In this stage, we evaluated our method for controlling

four different dexterous hands with high degrees of freedom

in both quasi-static and sequential settings. The evalua-

tion is based on the hand-tips reach tasks, which require

the fingertips to reach target positions. We compare our

method with four baselines: a model-free method, Soft Actor-

Critic [33] (SAC) trained with 1M data points, and three

TABLE III: We evaluate our method on hand-tips reach

tasks in sequential setting for 100 episodes. S.R.: Success

Rate(%) ↑; R.E.: Reach distance Error per finger(cm) ↓; P.S.:

Planning Samples per step ↓. The successful thresholds for

Robotiq&Allegro&Shadowhand and Myohand are 0.8cm and

1.25cm respectively.

Methods
Robotiq Allegro Shadowhand Myohand

S.R. R.E. P.S. S.R. R.E. P.S. S.R. R.E. P.S. S.R. R.E. P.S.

RS 89 0.53 – 5 1.43 – 0 1.71 – 17 2.67 –

SAC 100 0.53 – 47 1.03 – 33 1.11 – 62 1.52 –

FM+RS 95 0.52 50k 8 1.28 50k 0 1.53 50k 22 2.25 50k

FM+BGD 100 0.57 3.2k 36 1.16 3.2k 25 1.18 3.2k 68 1.49 3.2k

FM+CEM 100 0.51 2.4k 53 0.94 2.4k 32 1.11 2.4k 71 1.40 2.4k

Ours 97 0.51 1.6k 61 0.89 1.6k 44 1.02 1.6k 78 1.29 1.6k

Generated Gestures

Example Gestures

Allegro Shadowhand Myohand

Fig. 4: Gesture Generation Experiment. We generate

common gestures from action perspective. Top: gestures

provided in LLM prompts; Bottom: generated gestures.

model-based methods—Random Shooting (FM+RS), Batch

Gradient Descent (FM+BGD), and Cross-Entropy Method

(FM+CEM)—each trained on 10K/100K data points (quasi-

static/sequential). Additionally, we examine the RS method,

which randomly interacts with the environment 1K/10K

times, to highlight the challenge of each experiment. As

shown in Table II and Table III, our method outperforms

the baselines in most cases across different dexterous hands

and settings. Although our method exhibits slightly lower

accuracy in two cases, it reduces planning samples by over

30%, indicating significant acceleration during inference.

Meanwhile, our method utilizes only 1%/10% of the data

required by model-free methods, demonstrating much higher

data efficiency.

B. Gesture Generation

In this section, we employed GPT-4 as the core model for

generating cost functions and conducted a study on gesture

generation. We directly applied a hand model trained on

10K data points from random exploration, to bidirectional
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Fig. 5: In-Hand Manipulation Experiments. Reorient Target2 sets 2 poses (±π
2

in z axis) as targets; Reorient 8objects

reorients 8 random objects to random poses within a given range. Reorient 100objects reorients 100 random objects to

random poses within a given range. The task reward for the first task and the success rates for the last two tasks are reported.

planning for attaining target actions. The generated gestures

are illustrated in Figure 4. Despite the intuitive nature

of the generation process, integrating the large language

model with the proposed hand model enables the creation

of diverse gestures, such as “Rock&Roll,” “Scissorhands,”

“Finger Gun,” and “Calling.” Our method demonstrates its

representational capabilities by being applicable to various

types of robotic hands. Notably, the successful generation of

gestures via employing a well-trained hand model suggests

that the hand model can be transferable across different

dexterous manipulation tasks.

C. In-Hand Manipulation

In this experiment, we apply decomposed dynamics learn-

ing to in-hand manipulation tasks using a hand model

pretrained with 100K data points. For comparison, we se-

lect three baselines: Soft Actor-Critic (SAC) to represent

model-free reinforcement learning; PDDM [15] which learns

a dynamics model for the whole manipulation system;

PDDM+MSL which enhances PDDM with a multi-step loss

for longer-term prediction. We evaluate our method in two

settings: one where the hand model is frozen during training,

and another where it was trained in an end-to-end manner.

As shown in Figure 5, our method (unfrozen) outperforms

all baselines across three tasks while utilizing significantly

less data than model-free RL. Although other model-based

methods are more data-efficient than model-free RL, they

do not achieve the same performance as ours. Additionally,

we found that freezing the hand model introduces large

prediction errors, leading to the failure in the first task.

D. Ablation: Impact of Action Dimension and Data Volume

In previous experiments, we observed that the inverse

model primarily impacts planning efficiency, whereas the for-

ward model is crucial for the accuracy of dexterous control.

Therefore, this section focuses on investigating two factors

affecting the forward model’s performance: action dimension

and data volume. The results, shown in Figure 6, indicate

that increasing data volume improves the forward model’s

prediction accuracy. However, higher action dimensions tend

to result in higher prediction errors. These findings suggest

Fig. 6: Ablation Study. We investigate the behavior of

prediction errors in quasi-static setting across varying action

dimensions and data volumes. Absolute values are stick on

top of each bar for direct comparison and log10 values are

reported as the heights of the bars for better visualization.

that augmenting dataset might mitigate the adverse effects

associated with higher action dimensions, thereby enhancing

the accuracy.

V. CONCLUSION

In this work, we propose a neural network-based internal

model for controlling a dexterous hand in high-dimensional

action space. Integrated with a CEM planner, our approach

achieves high-accuracy control across four different dexter-

ous hands in hand-tips reach tasks. Furthermore, we combine

the hand model with an LLM for gesture generation and with

an external model for data-efficient in-hand manipulation.

While our method successfully accomplishes several dexter-

ous tasks in simulation, representing fingertip positions as

hand state may complicate sim-to-real transfer. To facilitate

real-world deployment of our method, future work should

focus on more pragmatic settings and utilize raw observation,

such as point clouds, to represent the hand state.
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